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Abstract
We prove that the nonorthogonal states randomly selected from a set can evolve
into a linear superposition of multiple original and orthogonal complementing
states with failure branch if and only if the input states are linearly independent.
The results for a single-input state are also generalized into the case of several
copies of an input state.

PACS numbers: 03.67.−a, 03.67.Mn

1. Introduction

Due to the linearity and unitarity of quantum theory, there are some restrictions and limitations
on manipulations with quantum information: for example, the quantum no-cloning theorem
[1], which prohibits an arbitrary unknown state from being perfectly cloned; the quantum no-
deleting theorem [2, 3], which proves the impossibility of perfectly deleting an unknown state
against a copy; the quantum no-disentangling theorem [4, 5], which asserts that there cannot
exist the exact disentanglement machine for any unknown quantum state; the quantum no-
flipping theorem [6–10], which says that exact flipping of any unknown qubit is not possible,
i.e., there exists no perfect flipper which can operate on any unknown qubit state |ψ〉 resulting
in the orthogonal state |ψ⊥〉; the quantum no-complementing theorem [6, 7, 11], which states
the impossibility of producing an exact orthogonal complementing state along with the original
starting from a single copy. In other words, the quantum no-complementing theorem indeed
reflects the quantum no-anti-cloning properly. Though the perfect operations mentioned above
are not possible, one may realize these impossible operations either in a probabilistic but an
exact or deterministic but inaccurate way [7, 11–21]. For example, probabilistic cloning was
first proposed by Duan and Guo [13]; other authors developed it from a different point of
view [16, 19, 21]. With the great advances in the quantum information theory, understanding
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the limits of the manipulations that we can perform on quantum information becomes more
and more important. These limits tell us what we can do with the information contained in
unknown states and what we cannot. All of them unveil the unique properties of quantum
information from different aspects.

In spite of the intensive work on manipulation and extraction of quantum information,
surprising effects are continuously being discovered. For instance, in any physical situation the
cloning operation and complementing transformation (i.e. the universal NOT gate) are deeply
interconnected [7]; these two processes are always realized contextually and their optimal
fidelity is directly related [22, 23]. Another interesting related observation is that the two
anti-parallel spin states contain more information than two parallel spin states [6], i.e., one can
measure the spin direction of |ψ〉 with better fidelity when two qubits are in anti-parallel spin
state |ψ,ψ⊥〉 than in parallel one |ψ,ψ〉. Therefore, it is important to consider a quantum
complementing machine (i.e. an anti-cloning device) and a spin-flip machine [6]. Actually,
a probabilistic quantum anti-cloning machine and a probabilistic quantum flipping machine
were proposed in [11, 12]. Two machines respectively demonstrated that the nonorthogonal
state secretly chosen from a set can be faithfully anti-cloned into an orthogonal complementing
state along with the original or flipped into the orthogonal state with certain probabilities if
and only if the states are linearly independent. We note that in the above two processes
only a single state is produced probabilistically, i.e., |ψ〉 → |ψ〉|ψ⊥〉 or |ψ〉 → |ψ⊥〉 is
merely generated with certain probabilities. However, in quantum world, one can have
linear superposition of all possibilities with appropriate probabilities [16, 24–26]. If a real
quantum cloning-cum-complementing machine existed, it would take advantage of this basic
quantum property and produce simultaneously |ψ〉 → |ψ⊥〉⊗M , |ψ〉 → |ψ〉|ψ⊥〉⊗(M−1),
|ψ〉 → |ψ〉⊗2|ψ⊥〉⊗(M−2), . . . . . . , |ψ〉 → |ψ〉⊗M , where M is a positive integer. Motivated
by these, it is naturally desirable to ask whether there can exist a quantum machine which
takes an unknown quantum state as an input state and produces an output state which will be in
a linear superposition of all possible multiple original and orthogonal complementing states.
The answer is positive.

In this paper, we propose a quantum superimposing multiple cloning-cum-complementing
machine in section 2. We prove that the nonorthogonal states randomly selected from a set
S = {|ψ1〉, |ψ2〉, . . . , |ψk〉} can evolve into a linear superposition of multiple original and
orthogonal complementing states with the failure branch described by a composite state
(independent of the input state) by a unitary evolution together with a measurement if and
only if the states |ψ1〉, |ψ2〉, . . . , |ψk〉 are linearly independent. And we derive a bound on the
success probabilities of our machine. The generality of this machine, and the generalization
to the case of several input copies of a state are discussed in section 3. We show that
the probabilistic flipping machine [11, 12], the probabilistic anti-cloning machine [11], the
probabilistic cloning machine [13] and the probabilistic multiple anti-cloning machine are
special cases of our multiple cloning-cum-complementing machine; the ‘linear superposition
of multiple copies and complements of orthogonal states’ theorem and ‘no-superposition of
multiple clones-cum-complements’ theorem can also be obtained from our machine. Our
summary is presented in section 4.

2. Quantum superimposing multiple cloning-cum-complementing machine

We first consider under what conditions the states randomly selected from the set can be
evolved into a linear superposition of multiple original and orthogonal complementing states
together with failure branch by a unitary evolution and a measurement. This is answered by
theorem 1.
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Theorem 1. There exists a unitary operator U such that for any unknown nonorthogonal state
chosen from a set S = {|ψ1〉, |ψ2〉, . . . , |ψk〉} the machine can produce a linear superposition
of multiple clones-cum-complements together with failure branch given by

U(|ψi〉|�〉|P 〉) =
M∑

n=0

√
p

(i)
n |ψi〉⊗n

∣∣ψ⊥
i

〉⊗(M−n)|Pn〉 +
NC∑

l=M+1

√
f

(i)
l |φl〉AB |Pl〉,

(i = 1, 2, . . . , k), (1)

if and only if the states |ψ1〉, |ψ2〉, . . . , |ψk〉 are linearly independent. The machine is named
as the quantum multiple cloning-cum-complementing machine.

In equation (1), the unknown input state |ψi〉 from a set S belongs to a Hilbert space
HA = CNA ; |�〉 is the state of the ancillary system B belonging to a Hilbert space HB of
dimension NB = NM−1

A , where (M − 1) is the total number of blank states each having
dimension NA;

∣∣ψ⊥
i

〉
is the orthogonal complementing state of |ψi〉. If equation (1) holds,

the probe P is measured after the evolution. The output states are reserved if and only if the
measurement results of the probe are |Pn〉 (n = 0, 1, . . . , M). So pi

n is the success probability
for the ith input state |ψi〉 to produce n exact copies |ψi〉⊗n and (M −n) exact complementing
orthogonal states

∣∣ψ⊥
i

〉⊗(M−n)
; f

(i)
l is the failure probability for the ith input state to remain in

the lth failure component.
∑

l

√
f

(i)
l |φl〉AB |Pl〉 represents the failure branch. The states |φl〉AB

are normalized states of the composite system AB and they are not necessarily orthogonal.
|P 〉, |P0〉, |P1〉, |P2〉, . . . ,

∣∣PNC

〉
are the orthonormal basis states of the probing device with

NC > M . To prove that equation (1) holds with a positive probabilitypi
n, we introduce the

following lemmas.

Lemma 1. If the set S1 = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly independent, then the set S ={|ψ1〉⊗n
∣∣ψ⊥

1

〉⊗(M−n)
, |ψ2〉⊗n

∣∣ψ⊥
2

〉⊗(M−n)
, . . . , |ψk〉⊗n

∣∣ψ⊥
k

〉⊗(M−n)}
is linearly independent,

where M , n are positive integers and M > n.

Proof. We use the ‘negative approach’ to prove lemma 1. Let us suppose that the set
S = {|ψ1〉⊗n

∣∣ψ⊥
1

〉⊗(M−n)
, |ψ2〉⊗n

∣∣ψ⊥
2

〉⊗(M−n)
, . . . , |ψk〉⊗n

∣∣ψ⊥
k

〉⊗(M−n)}
is linearly dependent.

Then there exists
k∑

i=1

ci |ψi〉⊗n
∣∣ψ⊥

i

〉⊗(M−n) = 0 (2)

with ci (i = 1, 2, . . . , k) being not all zero. For an arbitrary unknown state |ψ〉 there exists
K|ψ〉 = |ψ⊥〉, where K is an antiunitary operator which satisfies [7, 12]: (i) 〈ψ |ϕ〉 =
〈ψ ′|ϕ′〉∗, where |ψ ′〉 = K|ψ〉, |ϕ′〉 = K|ϕ〉 and (ii) K

∑n
i=1 ci |i〉 = ∑n

i=1 c∗
i
K|i〉, where {|i〉}

is an orthonormal basis of n-dimensional Hilbert space. Consequently, equation (2) is reduced
to

K(M−n)

k∑
i=1

ci |ψi〉⊗M = 0 (M − n being an even number), (3a)

K(M−n)

k∑
i=1

c∗
i |ψi〉⊗M = 0 (M − n being an odd number). (3b)

From equation (3) we obtain that
∑k

i=1 ci |ψi〉⊗M = 0 or
∑k

i=1 c∗
i |ψi〉⊗M = 0 for each allowed

positive integer (M − n), which means that the set S = {|ψ1〉⊗M, |ψ2〉⊗M, . . . , |ψk〉⊗M} is
linearly dependent.
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However, it is easy to prove that the set S = {|ψ1〉⊗n, |ψ2〉⊗n, . . . , |ψk〉⊗n} (n > 1)
is linearly independent if the set S1 = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly independent (see
the appendix). Therefore, it is in contradiction with the result of the above assumption,
so the set S = {|ψ1〉⊗n

∣∣ψ⊥
1

〉⊗(M−n)
, |ψ2〉⊗n

∣∣ψ⊥
2

〉⊗(M−n)
, . . . , |ψk〉⊗n

∣∣ψ⊥
k

〉⊗(M−n)}
is linearly

independent. �

Lemma 2. If the set S = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly independent then the matrix
X = [〈ψi |ψj 〉n

〈
ψ⊥

i

∣∣ψ⊥
j

〉M−n]
is positive definite, where M,n are positive integers and

(M − n) � 0.

Proof. For an arbitrary column vector α = col(c1, c2, . . . , ck), the quadratic form α+Xα can
be expressed as

α+Xα =
k∑

i,j=1

c∗
i cjXij = 〈β|β〉 (4)

where |β〉 = ∑
i ci |ψi〉⊗n

∣∣ψ⊥
i

〉⊗(M−n)
. Since |ψ1〉, |ψ2〉, . . . and |ψk〉 are linearly independent,

according to lemma 1, the summation state |β〉 does not reduce to zero for any k vector α, and
its norm 〈β|β〉 is therefore always positive. By equation (4), we conclude that the matrix X is
positive definite. �

Now we prove theorem 1 in two stages. First, we show that if such a machine described by
equation (1) exists, then |ψ1〉, |ψ2〉, . . . , |ψk〉 are linearly independent. Consider an arbitrary
state |ψ〉 = ∑k

i=1 ci |ψi〉. If we send this state through the machine defined by equation (1),
the unitary evolution will yield

U(|ψ〉|�〉|P 〉) =
M∑

n=0

√
pn|ψ〉⊗n|ψ⊥〉⊗(M−n)|Pn〉 +

NC∑
l=M+1

√
fl|φl〉AB |Pl〉. (5)

However, by linearity of the quantum theory each of |ψi〉 (i = 1, 2, . . . , k) will go through
the transformation (1) and we obtain

U

(
k∑

i=1

ci |ψi〉|�〉|P 〉
)

=
k∑

i=1

ci

M∑
n=0

√
p

(i)
n |ψi〉⊗n

∣∣ψ⊥
i

〉⊗(M−n)|Pn〉

+
k∑

i=1

ci

NC∑
l=M+1

√
f

(i)
l |φl〉AB |Pl〉. (6)

From equations (5) and (6), if and only if |ψ〉 = |ψi〉, the final states in equations (5) and (6)
are the same; otherwise, the final states in equations (5) and (6) are different, which means
that the quantum state |ψ〉 cannot exist in a linear superposition of all possible states. We
know that if a set {|ψ〉, |ψ1〉, |ψ2〉, . . . , |ψk〉} contains distinct vectors such that |ψ〉 is a linear
combination of other |ψi〉’s, then the set is linearly dependent. Thus linearity prohibits us
from producing linear superposition of multiple clones-cum-complements for the input states
chosen from a linearly dependent set. Therefore, the unitary evolution (1) exists for any state
randomly selected from S only if the set S = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly independent.

Conversely, we demonstrate that the linear independence of {|ψi〉} (i = 1, 2, . . . , k)
results in the existence of unitary operator U given by equation (1). If and only if there
exists a unitary operator U satisfying equation (1), the inner product of equation (1)
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yields the equation

〈ψi |ψj 〉 =
M∑

n=0

√
p

(i)
n 〈ψi |ψj 〉n

〈
ψ⊥

i

∣∣ψ⊥
j

〉(M−n)
√

p
(j)
n +

NC∑
l=M+1

√
f

(i)
l f

(j)

l ,

(i = 1, 2, . . . , k j = 1, 2, . . . , k). (7)

Equation (7) can be denoted by the k × k matrix equation

G(1) =
M∑

n=0

AnXA+
n +

NC∑
l=M+1

Fl, (8)

where the matrices G(1) = [〈ψi |ψj 〉], X = [〈ψi |ψj 〉n
〈
ψ⊥

i

∣∣ψ⊥
j

〉M−n]
, An = A+

n =
diag

(√
p

(1)
n ,

√
p

(2)
n , . . . ,

√
p

(k)
n

)
and Fl = [√

f
(i)
l f

(j)

l

]
.

By lemma 1 given in [13], if equation (8) holds, then there exists a unitary operator
U satisfying equation (1). So we aim to prove that if the set S = {|ψ1〉, |ψ2〉, . . . , |ψk〉}
is linearly independent, then equation (8) holds for a positive definite matrix An. If the
nonorthogonal states {|ψi〉} (i = 1, 2, . . . , k) are linearly independent, it can be shown that
the matrix G(1) is positive definite [13] and the matrix X is positive definite too according to
lemma 2. From continuity, for small enough but positive p(i)

n (i = 1, 2, . . . , k), the matrix
G(1) − ∑M

n=0 AnXA+
n is also positive definite. Therefore, we can diagonalize the Hermitian

matrix G(1) − ∑M
n=0 AnXA+

n by a suitable unitary operator V as follows:

V +

(
G(1) −

M∑
n=0

AnXA+
n

)
V = diag(λ1, λ2, . . . , λk), (9)

where the eigenvalues λ1, λ2, . . . , λk are positive real numbers. In equation (8), we can choose

Fl = V diag
(
t
(1)
l , t

(2)
l , . . . , t

(k)
l

)
V + (10)

such that
NC∑

l=M+1

t
(i)
l = λi (i = 1, 2, . . . , k). (11)

Equations (9)–(11) indicate that equation (8) is satisfied with a positive definite matrix An if
the states are linearly independent. This completes the proof of theorem 1.

Now, we derive a bound on the success probabilities of this unitary transformation.
Taking the inner product of two distinct states given by equation (1) and using relation
|〈ψi |ψj 〉| = ∣∣〈ψ⊥

i

∣∣ψ⊥
j

〉∣∣, we have

|〈ψi |ψj 〉| �
M∑

n=0

√
p

(i)
n |〈ψi |ψj 〉|M

√
p

(j)
n +

NC∑
l=M+1

√
f

(i)
l f

(j)

l . (12)

By using the condition of normalization
M∑

n=0

p(i)
n +

NC∑
l=M+1

f
(i)
l = 1, (13)

we can obtain

1

2

M∑
n=0

(
p(i)

n + p(j)
n

)
� (1 − |〈ψi |ψj 〉|)/(1 − |〈ψi |ψj 〉|M). (14)

The equality in (14) holds if and only if 〈ψi |ψj 〉 = 〈
ψ⊥

i

∣∣ψ⊥
j

〉 = |〈ψi |ψj 〉| and p(i)
n = p

(j)
n .
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The inequality (14) indicates that the sum of success probabilities of two distinct
multiple cloning-cum-complementing states is always bounded by M and inner product of
two corresponding input nonorthogonal states.

3. Discussion and generalization

Now we discuss the generality of our multiple cloning-cum-complementing machine.
If the states |ψ1〉, |ψ2〉, . . . , |ψk〉 are orthogonal and all success probabilities p(i)

n ’s are
nonzero, then the unitary evolution (1) allows us to have a ‘linear superposition of multiple
copies and complements of orthogonal states’ theorem since the matrix equation (8) is always
satisfied.

If all the failure probabilities f
(i)
l ’s are zero, from the proof of theorem 1, we have that

equation (8) cannot be satisfied with p(i)
n > 0 for nonorthogonal states |ψi〉 (i = 1, 2, . . . , k).

Therefore, we have a ‘no-superposition of multiple clones-cum-complements’ theorem.
If we take that M = 1, p

(i)
0 (i = 1, 2, . . . , k) are non-zero and all others are zero, then

equation (1) reduces to

U(|ψi〉|P 〉) =
√

p
(i)
0

∣∣ψ⊥
i

〉|P0〉 +
∑

l

√
f

(i)
0 |ψl〉AB |Pl〉, (15)

which describes a probabilistic flipping machine discussed in [11, 12]. The bound on the
success probabilities (14) reduces to 1

2

(
p

(i)
0 + P

(j)

0

)
� 1. When 〈ψi |ψj 〉 = 〈

ψ⊥
i

∣∣ψ⊥
j

〉 =
|〈ψi |ψj 〉| and p

(i)
0 = p

(j)

0 , we reach the equality

p
(i)
0 = p

(j)

0 = 1. (16)

It corresponds to the result [27, 28] that the qubits chosen from the polar great circle on the
Bloch sphere can be flipped by the same unitary operator.

If we take that M = 2, p
(i)
1 (i = 1, 2, . . . , k) are non-zero and all others are zero, then

equation (1) reduces to

U(|ψi〉|�〉|P 〉) =
√

p
(i)
1 |ψi〉

∣∣ψ⊥
i

〉|P1〉 +
∑

l

√
f

(i)
1 |φl〉AB |Pl〉, (17)

which describes the probabilistic anti-cloning machine discussed in [11]. In this case, our
bound (14) reduces to

1
2

(
p

(i)
1 + p

(j)

1

)
� 1/(1 + |〈ψi |ψj 〉|). (18)

If we take that M = 2, p
(i)
2 (i = 1, 2, . . . , k) are non-zero and all others are zero, then

equation (1) reduces to

U(|ψi〉|�〉|P 〉) =
√

p
(i)
2 |ψi〉|ψi〉|P2〉 +

∑
l

√
f

(i)
l |φl〉AB |Pl〉. (19)

Our bound (14) reduces to 1
2

(
p

(i)
2 + p

(j)

2

)
� 1/(1 + |〈ψi |ψj 〉|), which is the same as the

Duan–Guo bound [13] for producing two clones in a probabilistic fashion.
If we take that M is an even number, p

(i)
M/2 (i = 1, 2, . . . , k) are non-zero and all others

are zero, then equation (1) reduces to

U(|ψi〉|�〉|P 〉) =
√

p
(i)
M/2

(|ψi〉
∣∣ψ⊥

i

〉)⊗(M/2)|PM/2〉 +
∑

l

√
f

(i)
l |φl〉AB |Pl〉, (20)
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which can be regarded as the probabilistic multiple anti-cloning machine. Our bound (14)
reduces to

1
2

(
p

(i)
M/2 + p

(j)

M/2

)
� (1 − |〈ψi |ψj 〉|)/(1 − |〈ψi |ψj 〉|M). (21)

The above analyses show that our machine given in theorem 1 is general to some degree.
Nevertheless, theorem 1 is limited to taking a single copy of |ψi〉 as an input state. Then,
can m(m is a positive integer and m > 1) copies of nonorthogonal state |ψi〉 secretly chosen
from the set S be evolved into a linear superposition of multiple original and orthogonal
complementing states by a general unitary-reduction operation? The answer is ‘yes’ and
the generalization of the superimposing multiple cloning-cum-complementing machine for a
single-input copy |ψi〉 to that for m input copies |ψi〉⊗m is straightforward; it can be completed
by a way similar to the proof of theorem 1. For the sake of conciseness, we omit its proof.
The results are displayed as follows.

Theorem 2. For any unknown nonorthogonal state chosen from a set S = {|ψ1〉, |ψ2〉, . . . ,
|ψk〉}, there exists a unitary operator U such that |ψi〉⊗m can be evolved into a linear
superposition of multiple clones-cum-complements together with the failure branch given
by

U(|ψi〉⊗m|�m〉|P 〉) =
M∑

n=0

√
p

(i)
n |ψi〉⊗n

∣∣ψ⊥
i

〉⊗(M−n)|Pn〉 +
NC∑

l=M+1

√
f

(i)
l |φl〉AB |Pl〉,

(i = 1, 2, . . . , k), (22)

if and only if |ψ1〉⊗m, |ψ2〉⊗m, . . . , |ψk〉⊗m are linearly independent.

In equation (22), |�m〉 is the state of the ancillary system B belonging to Hilbert space
HB of dimension NB = NM−m

A , where M,m are positive integers and M > m, (M − m) is
the total number of blank states each having dimension NA. p(i)

n and f
(i)
l denote the success

and failure probabilities for the ith input state |ψi〉⊗m to produce n exact copies |ψi〉⊗n and
(M −n) exact orthogonal complementing states

∣∣ψ⊥
i

〉⊗(M−n)
respectively. The other quantities

have the same meaning as explained above.
The bound on the success probabilities of our general machine (22) is

1

2

M∑
n=0

(
p(i)

n + p(j)
n

)
� (1 − |〈ψi |ψj 〉|m)/(1 − |〈ψi |ψj 〉|M). (23)

It is obvious that theorem 1 is a special case of theorem 2 with m = 1.
The quantum machine described by equation (22) takes m copies of |ψi〉 as an input

state and produces an output state whose success branch is the linear superposition of n exact
copies of |ψi〉 and (M − n) exact copies of

∣∣ψ⊥
i

〉
and the failure branch is the superposition of

composite states independent of the input state. In the case of n � m, some of the copies are
flipped. In the case of m < n � M , the input states are cloned and flipped at the same time.

Finally, we note that our approach considers the spin-flipping, anti-cloning and cloning
transformation and has a linear superposition of multiple clones-cum-complements. On
the other hand, Qiu [12] analyzed some general probabilistic quantum cloning and deleting
machines with a general unitary or antiunitary operator appearing on the right-hand side of
the equation used to describe the machine model, but Qiu [12] did not include the linear
superposition of all possible multiple states. Then, we may generalize our theorem 1 to the
case that a general unitary or antiunitary operator appearing on the right-hand side of the
equation described the machine model as a further task.
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4. Summary

In conclusion, we have constructed a quantum superimposing multiple cloning-cum-
complementing machine. We have proved that the nonorthogonal states randomly selected
from a certain set S can evolve into a linear superposition of multiple original and orthogonal
complementing states with failure branch by a unitary evolution together with a measurement
if and only if the input states are linearly independent. We have derived a bound on the
success probabilities of our machine. We have shown that the probabilistic flipping machine
[11, 12], the probabilistic anti-cloning machine [11], the probabilistic cloning machine [13]
and the probabilistic multiple anti-cloning machine are special cases of our machine; the
‘linear superposition of multiple copies and complements of orthogonal states’ theorem and
‘no-superposition of multiple clones-cum-complements’ theorem can also be obtained from
our machine. These results for a single-input state have been generalized into the case of
several copies of an input state. Our result may have potential applications in quantum
information processing (such as quantum state engineering, anti-parallel storage of quantum
information, etc) because it provides an intrinsic regularity of quantum states in the quantum
computer. It also tells us how to control the success probability for the input states to
produce multiple original and orthogonal complementing states in a desired way by using
controllable operations. Moreover, we hope that our result can play a fundamental role in
future understanding of quantum-information theory.
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Appendix

Now, we prove that the set S = {|ψ1〉⊗n, |ψ2〉⊗n, . . . , |ψk〉⊗n} (n > 1) is linearly independent
if the set S1 = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly independent. The proof is as follows.

Proof. If the set S1 = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly independent, let us suppose that
S = {|ψ1〉⊗n, |ψ2〉⊗n, . . . , |ψk〉⊗n} is linearly dependent, i.e., there exists∑

i

ci |ψi〉⊗n = 0, (A.1)

with ci (i = 1, 2, . . . , k) being not all zero. For the state |ψj 〉 (j = 1, 2, . . . , k), there exists

(n−1)⊗〈ψj |
∑

i

ci |ψi〉⊗n =
∑

i

ci〈ψj |ψi〉(n−1)|ψi〉 = 0, (A.2)

Since not all 〈ψj |ψi〉 are zero, we obtain that the set S1 = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly
dependent from equation (A.2); however, it is in contradiction with the fact that the set
S1 = {|ψ1〉, |ψ2〉, . . . , |ψk〉} is linearly independent. Therefore, the set S = {|ψ1〉⊗n,

|ψ2〉⊗n, . . . , |ψk〉⊗n} is linearly independent. �
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